
Spring Onset Predictability in the North American
Multimodel Ensemble
Carlos M. Carrillo1 , Toby R. Ault1, and Daniel S. Wilks1

1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA

Abstract The predictability of spring onset is assessed using an index of its interannual variability (the
“extended spring index” or SI-x) and output from the North American Multimodel Ensemble reforecast
experiment. The input data to compute SI-x were treated with a daily joint bias correction approach, and
the SI-x outputs computed from the North American Multimodel Ensemble were postprocessed using an
ensemble model output statistic approach—nonhomogeneous Gaussian regression. This ensemble
model output statistic approach was used to quantify the effects of training period length and ensemble
size on forecast skill. The lead time for predicting the timing of spring onset is found to be from 10 to
60 days, with the higher end of this range located along a narrow band between 35°N to 45°N in the
eastern United States. Using continuous rank probability scores and skill score (SS) thresholds, this study
demonstrates that ranges of positive predictability of SI-x fall into two categories: 10–40 and 40–60 days.
Using higher skill thresholds (SS equal to 0.1 and 0.2), predictability is confined to a lower range with
values around 10–30 days. The postprocessing work using joint bias correction improves the predictive
skill for SI-x relative to the untreated input data set. Using nonhomogeneous Gaussian regression, a
positive change in the SS is noted in regions where the skill with joint bias correction shows evidence of
improvement. These findings suggest that the start of spring might be predictable on intraseasonal time
horizons, which in turn could be useful for farmers, growers, and stakeholders making decisions on
these time scales.

1. Introduction

Variations in the timing of spring onset affect ecosystems, forest fires, drought, pollen, and agriculture (Ault
et al., 2013; Westerling et al., 2006). Given its importance to human and ecological health, there is a pressing
need to characterize the potential predictability of spring onset on seasonal time horizons. In principle, such
forecasts could be issued alongside seasonal predictions of more traditional variables like precipitation and
temperature (Kirtman et al., 2014; Mo & Lettenmaier, 2014; Saha et al., 2014). However, the predictability of
such seasonal transitions has not yet been widely explored.

Forecasting seasonal transitions can extend the usability of forecasts on seasonal time horizons.
Characterizing such transitions requires systematic indices that are consistent through space and time, such
as the “extended” spring index (SI-x) of Schwartz et al. (2013) and Ault et al. (2015). Development of this
particular index relied on previous efforts that established a strong relationship between blooming of plants
and the spring onset (Cayan et al., 2001; Schwartz et al., 2006; Schwartz & Marotz, 1986) and also linked the
interannual variability of spring onset to large-scale atmospheric patterns and ocean forcing as noted in sea
surface temperature (Ault et al., 2011).

Here we evaluate the potential predictability of spring onset as characterized by the SI-x (Ault et al., 2015;
Schwartz et al., 2013). We focus on SI-x because it integrates temporal and spatial atmospheric patterns of
variability across synoptic to intraseasonal scales. As such, the SI-x serves as a proxy for spring onset across
North America, and predicting the timing of this seasonal transition may be critical for anticipating warm-
season events at long lead times. That is, an early spring would lead to different ecological and agricultural
risks in summer than a late spring because an early start to the growing season could favor invasive species
or certain plant and human pathogens (Monahan et al., 2016). Specifically, we are interested in quantifying
the lead times on which SI-x can be predicted. In addition, a state-of-the-art ensemble postprocessing tech-
nique—nonhomogeneous Gaussian regression (NGR)—is used to answer how the multimodel ensemble
outperforms ensembles from individual models, and also whether longer reforecast training periods improve
postprocessing capacity by enhancing prediction skill.
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2. Data and Methodology
2.1. Observational Data and SI-x

The SI-x used in this study was originally developed in Schwartz and
Marotz (1986) and Schwartz et al. (2006) and then updated for
continental-scale coverage in Schwartz et al. (2013). Briefly, it is a
temperature-based index that identifies the day of year (DOY) when
key early-spring phenological events are likely to occur. Its only time-
varying inputs are daily minimum and maximum temperatures, mean-
ing that it can be applied over a wide range of temperate climates to
yield a consistent metric of the start of spring at each location across
space and over many years. Additional details on the assumptions

and limitations are documented elsewhere (e.g., Ault et al., 2015), and the code for computing the SI-x is
widely available through GitHub (https://github.com/cornell-eas/SI-X). We calculated SI-x from the Berkeley
Earth surface temperature data set (Rohde et al., 2013), which includes daily maximum (Tmax) and minimum
(Tmin) temperatures at 1° lat/lon spatial resolution, obtained from http://www.BerkleyEarth.lbl.org/data/. We
use observational data over the period 1981 to 2012 for comparison with the NMME reforecast data. Two vari-
ables were evaluated in this study: the “leaf” and “bloom” indices. The leaf and bloom indices pertain to the
first leaf and bloom of plants related to seasonal transition of phenology due to variations of weather and
climate. However, the interannual variability in both indices is similar (Ault et al., 2011), and here we only
show results for the leaf index as a proxy for the start of spring.

2.2. The NMME Forecast Data

Forecasts of daily maximum and minimum temperature are obtained from the North American Multimodel
Ensemble (NMME) Phase 2 data set (Kirtman et al., 2014), which includes multiple models and multiple
ensemble members from individual models over the period 1981 to present (http://www.cpc.noaa.gov/pro-
ducts/NMME/data.html). All model fields were bilinearly regridded to a uniform 1° lat/lon grid. As we are inter-
ested in spring onset, we only used forecasts initialized from January through April. Five models were used to
assess SI-x predictability (Table 1). Ten members, fixed ensemble members numbered from 1 to 10, per each
model ensemble were used to be consistent with the weighting amongmodels, and each ensemble member
yields a single SI-x field that is considered for the construction of the statistical approaches.

2.3. Skill Score Metrics

We quantify the skill of postprocessed NMMEmodel predictions by comparing them to both climatology and
uncorrected model output. To perform this evaluation, we apply two objective metrics that measure forecast
skill improvement against a reference prediction: the reduction of variance skill score (SSclim) and the con-
tinuous ranked probability score (CRPS; Matheson & Winkler, 1976) skill score (SScrps). Both of these skill
scores are variations of the generalized skill score (SS)

SS ¼ A� Aref
Aperf � Aref

�100%; (1)

which measures the accuracy improvement (in units of percentages) of a given forecast (A) over the depar-
ture of reference metric (Aref) from the perfect forecast (Aperf; Wilks, 2011).

The SSclim,

SSclim ¼ MSE�MSEclim
0�MSEclim

�100%; (2)

is based on the mean square error (MSE),

MSE ¼ 1
n

Xn

k¼1
yk � okð Þ2; (3)

of observed (ok) and forecasted (yk) data. The reference metric Aref is the MSE of the climatology (MSEclim),

MSEclim ¼ 1
n

Xn

k¼1
ok � oð Þ2; (4)

Table 1
The NMME Models and Organizations

Organization Model

Geophysical Fluid Dynamics Laboratory (NOAA-GFDL) FLORB01
Global Modeling and Assimilation Office (NASA-GMAO) GEOS5
Environmental Canada CMC1-CanCM3

CMC2-CanCM4
National Center for Atmospheric Research (NCAR) CESM1

Note. NMME = North American Multimodel Experiment; NASA = National
Aeronautics and Space Administration; NOAA = National Oceanic and
Atmospheric Administration.
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where o is the observed climatological average, and the perfect forecast, Aperf, is zero as it has zero MSE.

The SScrps is defined as

SScrps ¼ CRPS� CRPSref
0� CRPSref

�100%; (5)

which is based on the CRPS:

CRPS ¼ ∫∞�∞ F yð Þ � Fo yð Þ½ �2dy; (6)

where F(y) is the continuous cumulative distribution function (CDF) of the predictand y. The term Fo is the
cumulative probability step function defined by

Fo yð Þ ¼ 0; y < observed value

1; y≥observed value

�
: (7)

As SI-x follows an approximately Gaussian distribution with mean μ and variance σ2 (e.g., Ault et al., 2015),
CRPS for a given observation o can be calculated using

CRPS μ; σ2; o
� � ¼ σ� o� μ

σ

� �
2Φ

o� μ
σ

� �
� 1

h i
þ 2∅

o� μ
σ

� �
� 1ffiffiffi

π
p

� �
; (8)

where Φ() and ϕ() are the CDF and PDF, respectively, of the standard Gaussian distribution. Equation (8)
is used when CRPS is used to evaluate NGR-based forecasts, where the forecast is defined as Gaussian distri-
bution. Alternatively, we employed an ensemble version of the CRPS, which operates on the full discrete
ensemble. The ensemble CRPS (eCRPS) is based on the alternative formulation for equation (8) (Gneiting &
Raftery, 2007):

CRPS F; oð Þ ¼ EF X � oj j � 1
2
EF X � X

0
l m

; (9)

where EF denotes statistical expectation with respect to the predictive distribution F (x), and X and X’ are inde-
pendent realizations from F (x). Substitution of sample averages from the forecast ensemble for the expecta-
tions in equation (8) (Ferro et al., 2008; Van Schaeybroeck & Vannitsem, 2015) yields

eCRPS ¼ 1
n

Xn
t¼1

1
m

Xm
k¼1

xt;k � yt
� �� δt

2

" #
; (10)

where

δt ¼ 1
m m� 1ð Þ

Xm
j¼1

Xm
k¼1

jxt;j � xt;k j
" #

: (11)

For our application xt, j and xt, k are raw ensemble members, m is the total number of members, 50, and
yt is observation.

2.4. Bias Correction

A joint bias correction (JBC) technique (e.g., Thrasher et al., 2012) is applied to remove systematic model
errors in both Tmax and Tmin temperature while preserving their covariance. This correction is required
because SI-x is sensitive to the covariance of Tmax and Tmin, and bias correcting variables individually can gen-
erate physically unrealistic outcomes (Thrasher et al., 2012). As temperature variations tend to be normally
distributed, we define the joint distribution of daily maximum and minimum temperatures to be bivariate
Gaussian (Wilks, 2011), which is motivated by the high correlation between daily Tmax and Tmin. After fitting
the parameters of the joint distribution to gridded observations and NMME temperatures, we follow a quan-
tile remapping approach similar to the one described in Li et al. (2014, their Figure 1). First, we estimate the
quantile of a Tmin value in the forecast CDF and then match this value to the same quantile in the (marginal)
observational CDF; a bias corrected value for Tmin is therefore obtained by identifying the appropriate
observed Tmin value for that quantile. Next, to bias-correct Tmax, we condition its CDF on Tmin and then
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associate conditioned quantiles of simulated Tmax values with observational ones. This procedure yields bias-
corrected values of Tmin and Tmax for every grid point for every day of each year and preserves the covariance
structure of Tmin and Tmax in the observations.

2.5. The Ensemble Model Output Statistics

In addition to biases, ensemble forecasts have dispersion errors from initial-condition sensitivity and model
structural error, among other sources (Wilks, 2011). However, multimodel ensemble forecasts are amenable
to estimating forecast-uncertainty distributions, which can be used to calibrate these ensembles probabilis-
tically. Here we use the nonhomogeneous Gaussian regression-ensemble model output statistic (NGR-EMOS)
method (Gneiting et al., 2005) to post process the NMME direct model output forecast in order to improve SI-x
forecast skill. Under this approach, the forecast-uncertainty distribution is assumed to be defined by a
Gaussian distribution as indicated in equation (12), which describes the cumulative probability that a future
observation V will be less than a forecast quantile q:

Pr V≤qð Þ ¼ Φ
q� aþ b1�xens1 þ b2�xens2 þ b3�xens3 þ b4�xens4 þ b5�xens5ð Þ

c þ d�s2ens
� �1

2

2
4

3
5; (12)

Figure 1. Mean day of the year (DOY) of the SI-x leaf index during the period 1981–2011 for the Berkeley Earth surface tem-
perature (OBS; top), for the multimodel ensemble (middle) of the North America Multimodel Ensemble (NMME), and the
NMME minus OBS difference (bottom). Oblique lines define regions with global statistically significant values
(αGLOBAL = 0.05) of this difference based on the false discovery rate (FDR) of multiple hypothesis tests (Wilks, 2016).
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where Φ[ ] indicates the evaluation of the cumulative distribution function, xensM is the ensemble average of
each model from Table 1, and s2ens is the ensemble variance. The parameters a, b1, b2, b3, b4, b5, c, and d define

the adjusted mean (μ ¼ aþ b1�xens1 þ b2�xens2 þ b3�xens3 þ b4�xens4 þ b5�xens5) and variance (σ2 ¼ c þ d�

s2ens), where xensM ¼ 1
10

X10

i¼1
xM;i and s2ens ¼

1
49

X50
i¼1

xi � xð Þ2 with x ¼ 1
50

X50
i¼1

xi . These parameters are used

to generate the calibrated SI-x data. The mean is calculated with six parameters because our approach does
not assume that the ensembles derived from the individual models are exchangeable. These eight
parameters are estimated using a minimization of the average of CRPS (equation (8)) over the n training-
period samples.

In this study, we fit the NGR-EMOS using four different training period lengths (15, 20, 25, and 30 years) and
five ranges of ensemble numbers (10, 20, 30, 40, and 50), which training data are out of sample (observations
to be forecasted are not included in the training data). Drawing for the fitting of these parameters is randomly
selected from the maximum of year length and ensemble number without repetition.

Figure 2. Standard deviation (STD) of the SI-x leaf index during the period 1981–2012 for the Berkeley Earth surface
temperature data set (OBS; top), for the multimodel ensemble (middle) of the North America Multimodel Ensemble
(NMME), and the NMME minus OBS difference (bottom). Oblique lines define regions with global statistically significant
values (αGLOBAL = 0.05) of this difference based on the false discovery rate (FDR) of multiple hypothesis tests (Wilks,
2016).
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3. Results and Discussion
3.1. SI-x Climatology

Usingmean DOY values, the SI-x leaf index computed from the NMME is comparable to the observational pat-
tern (Figure 1). As in previous studies (e.g., Ault et al., 2015; Cayan et al., 2001), a prominent north-south gradi-
ent is present in both the observed data and the NMME ensemblemean. NMMEmean and standard deviation
are computed over the multimodel ensemble without distinguishing individual model-specific distributions.
Greater spatial heterogeneity is observed along the western Intermountain Region, which is not fully repro-
duced by the NMME mean (bottom panel of Figure 1). The standard deviations of the SI-x in Figure 2 show
less agreement between the observed pattern and model simulations. Although the simulations capture
maximum interannual variance in the Pacific Northwest and in the southeastern United States, NMME over-
estimates this variability within a range of 4 days in the Intermountain Region, west of the Rockies (bottom
panel of Figure 2). Thus, model biases are more apparent in the standard deviation than in the mean.

3.2. The SI-x SS

We first evaluate the skill of NMME models in predicting SI-x without any statistical correction. The ensemble
CRPS, computed using equation (10), shows high values in the Intermountain Region (for January and
February) and in the northeastern region of the domain (for March and April; Figure 3). High CRPS values

Figure 3. Spatial pattern of the ensemble continuous ranked probability score (eCRPS) of the SI-x leaf index. The eCRPS is
computed using models from the North America Multimodel Experiment (NMME) without postprocessing treatment for
four initializations corresponding to January (JAN), February (FEB), March (MAR), and April (APR). A total of 50 ensemble
members are used for each realization, and the period of analysis is from 1981 to 2012. High values of eCRPS indicate poor
model performance. Oblique lines show regions where the spring index has already been reached leaf stage for each panel.
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are associated with poor model performance. CRPS values are low (indicating good skill) in low-elevation
terrain. However, the raw ensemble forecasts do not outperform the CRPS climatology reference (CRPS [clim];
Figure 4), which maximum value is on the order of 3.5 CRPS units. This CRPS climatology reference shows a
coast-to-coast band around 35°N, which is consistent with the difference of variance between observations
and NMME models (Figure 2). This result shows that the raw ensemble forecasts are of limited utility, as
they exhibit negative skill with respect to the climatology (Figure S1).

Figure 5. As in Figure 3 but continuous ranked probability score is computed after the nonhomogeneous Gaussian regres-
sion (NGR) is applied to the SI-x.

Figure 4. Spatial pattern of the continuous ranked probability score (CRPS) of the spring index (SI-x) for the observed leaf
parameter, which is considered as the reference climatology (CLIM-REF) used in the computation of the skill score. The SI-x
is computed for the period 1981–2012, using observed Berkeley Earth surface temperature.
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The previous results did not include the NGR-EMOS approach, so we applied it to the SI-x output to evaluate
the effects of correcting mean and dispersion errors. We illustrate an example of the multimodel ensemble
error dispersion using one grid point for different model initialization times (Figure S2). The temporal evolu-
tion from an early to late initialization (January to March) reveals the reduction of the error dispersion among
the model ensemble realizations. Therefore, the NGR-EMOS should use this information in its systematic
approach to correct the final output. Using the NGR-EMOS approach, we found that this is indeed the case.
Thus, the NGR-EMOS analysis (Figure 5) reveals an improvement with respect to the raw ensemble data
(Figure 3) in all the different initializations. Although there is still a challenge to correct data in the
Intermountain Region, the lower CRPS values show that the NGR-EMOS postprocessed forecasts are
improved relative to the raw direct model output.

Figure 6 shows the SScrps for the entire set of forecasts, starting on 1 January, 1 February, 1 March, and 1 April
for the period from 1981 to 2012. The CRPS [clim] used to compute SScrps is shown in Figure 4, and also an
alternative SScrps field (when using the untreated NMME CRPS as reference) is shown in Figure 7 to illustrate
the value added of the NGR-EMOS against the untreated data set. However, a comparison relative to the cli-
matology is a fair metric and hence it is used here. Thus, in January (Figure 6), several regions with improve-
ment of at least 10% are observed in the southeast, the northwest Pacific, the northeast, and the southwest.
In addition, results improve as the seasons progress, as should be expected because the initialization dates
approach the onset day. In February, regions along the southern states improve. This is noted by the

Figure 6. Spatial pattern of the skill score (SS) for the SI-x leaf index. The SS is computed using the continuous ranked prob-
ability score (CRPS) as measurement metric for the SI-x computed using models from the North America Multimodel
Experiment (NMME) and for four initializations corresponding to January (JAN), February (FEB), March (MAR), and April
(APR). Positive values indicate that improvement in percentage with respect to the reference climatology (Figure 4) and
oblique lines show regions where the spring index is already reached for each panel.
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Figure 7. Spatial pattern of the skill score (SS) for the SI-x leaf index. The SS is computed using the continuous ranked prob-
ability score (CRPS) as measurement metric. The SI-x is computed using models from the North America Multimodel
Experiment (NMME) and for four initializations corresponding to January (JAN), February (FEB), March (MAR), and April
(APR). Positive values indicate that improvement in percentage with respect to the untreated CRPS (Figure 3) and oblique
lines show regions where the spring index is already reached for each panel.

Figure 8. The continuous ranked probability skill score (SScrps) versus time plot for initializations on 1 January, 1 February,
1 March, 1 April, and 1 May. The SScrps is calculated for an average region in the Great Plains (100°W–90°W, 40°N–50°N).
The solid line is the fitted curve with a second-order polynomial, SScrps = 0.0363 x2 – 0.1310 x + 0.1599, and the dashed lines
highlight the value for the SScrps = 0.2 and x = 3.89 in months unit (day of year [DOY] = 86). The average observed SI-x for
this region is 104 DOY.
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region with 30–50% of positive change (Figure 6), which describes the improvement by NGR-EMOS. The
major feature in February is the percentage of negative skill, on the order of 20%, in the Intermountain
Region, as can be inferred from the analysis of the standard deviation anomaly (Figure 2; bottom). In
March, the region of improvement expands and migrates north, consistent with what was shown for
January. Similar results are observed for the initializations starting in April. A region with positive SScrps
change in all the months is located below 40°N—Missouri, Illinois, Ohio, Kentucky, West Virginia, and
Virginia—where the major improvement is observed during January, February, and March. This was likely
to happen because this region coincides with the maximum variability of the SI-x standard deviation
(Figure 2), near 85°W, 35°N. This suggests that NGR-EMOS is able to add value by enhancing good SI-x
individual forecast members in the NMME.

3.3. The SI-x Predictability Range

The SScrps evaluates the forecast skill of SI-x as a percentage of the reference climatology (Figure 6).
However, to determine how many days in advance SI-x computed from NMME forecasts can estimate spring
onset, the time dependence of SSclim needs to be characterized. Figure 8 shows how this additional metric is
constructed for a region in the Great Plains (100°W–90°W, 40°N–50°N). First, the SScrps values for every initi-
alization (1 January through 1 May) are calculated using the climatological reference (Figure 4). Second, the
SScrps dependence on time is constructed based on the different model initialization dates, allowing us to
compute the SI-x predictability range for a given SScrps level of improvement. Logically, predictive skill
increases as the initialization date approaches the target date. In the worst forecast skill scenario, we could
expect to have at least the same chance to make a forecast as good as the climatology, which means when
SScrps = 0.0. A SScrps value of 0.2 therefore represents a 20% improvement over the reference climatology,
and similarly SScrps = 0.10 corresponds to a 10% improvement. In Figure 8, the solid line is the fitted curve
with a second-order polynomial, SScrps = 0.0363 x2–0.1310 x + 0.1599, with x in months units. Thus, using
SScrps = 0.20, we estimate x = 3.89 months or 86 days (DOY) in the fitted SScrps time variation (dashed line).
In this example, a SI-x predictability range of about 20 days is obtained according to the fitted SScrps versus
time relationship, as climatology for the region is 104 DOY. Values for the SI-x predictability range of the same
order are obtained with the alternative SSclim metric (Table 2).

The observed 20-day forecast skill is in the range of a model such as the Climate Forecast System version 2
reported by Saha et al. (2014), and it might justify the use of SS equal to 20% as a meaningful benchmark.
This 20-day predictability range is the one that Climate Services would potentially use as information that
includes a level of improvement of 20% (SScrps = 0.20) with respect to climatology as forecast. As the
SScrps is a specific characteristic of each model’s performance, different models have different SScrps values
and predictability ranges for the same region, and this information can be used to weight a final product or to
eliminate some models in an optimal operational forecast. For example, this weighting is objectively
achieved by the b parameters in equation (12), which indicates the contribution of the five models to form
the best postprocessed SI-x forecast, with high values defining the best models and near-zero values suggest-
ing less useful models (Table 3).

Table 2
SI-x Predictability Ranges

Model E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 noJBC JBC

CanCM3 18.8 30.7 23.3 27.6 21.8 26.4 26.4 23.8 22.0 19.3 24.0 24.8
CanCM4 23.2 27.4 22.6 27.2 24.1 23.0 24.6 25.2 25.8 25.0 24.8 27.3
CESM1 13.8 14.0 14.8 17.1 19.6 13.1 17.2 12.2 12.9 19.3 15.4 23.6
FLORB01 24.7 25.3 30.9 30.0 14.3 16.1 11.3 22.8 13.0 10.9 19.9 19.5
GEOS-5 18.2 18.9 12.8 19.1 25.2 21.4 22.6 22.8 17.7 22.2 20.1 23.1
MMEM 20.9 23.7

Note. SI-x predictability ranges (in days) average for a region over the U.S. Great Plains (100°W–90°W, 40°N–50°N) using mean square error (MSE) as metric to com-
pute the skill score (SS) as in equation (2). These values are calculated from forecasted SI-x with untreated temperature data sets (noJBC for non-joint bias correc-
tion) for each individual model (CanCM3, CanCM4, FLORB01, and GEOS-5) and individual ensemble members (E1,…, E10). The next column shows the ensemble
average for each model (noJBC). The last column is the same as in the noJBC column but after temperature data sets to compute SI-x were treated with the joint
bias correction (JBC) approach. The multimodel ensemble mean (MMEM) is added at the bottom for both approaches.
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The SI-x predictability for the continental United States is in the range of 10–60 days for the NGR-EMOS
NMME (Figure 9a). The SScrps threshold used here is 0.0, which is a threshold that is comparable with clima-
tology. We extended the analysis to SScrps = 0.1 (Figure 9b) and 0.2 (Figure 9c), reducing both the temporal
range and geographic extension of high forecast skill. This SI-x predictability, in the range of 10–60 days for
SScrps = 0.0, can be confirmed by the behavior of individual models (Figure S3). The scale bar groups the fore-
cast skill range into low (10–40 days) and high (40–60 days) to highlight the results in the intraseasonal and
seasonal scales, with the goal of identifying them, but without assessing the source of what produces better
results in these ranges. The relatively low range of 10–40 days is characteristic of the northern Great Plains
and part of the Intermountain Region, which was suggested from the analysis of the mean and variance
shown previously. The high range of 40–60 days is shown north of 45°N and marginally in the

Intermountain Region. These bands reflect the region of minimum
variability in observed standard deviation (Figure 2). The SI-x predict-
ability range shows a north-south gradient as a typical characteristic
seen in the SI-x climatology that reflects the seasonal March from win-
ter to summer.

The multimodel ensemble NMME NGR-EMOS (Figure 9) agrees well
with the individual model ensembles (Figure S3), which portrays differ-
ences in the SI-x forecast skill when applying the TT-JBC approach. As
expected, the spatial pattern of predictability differs among models.
Although the Goddard Earth Observing SystemModel, Version 5model
shows the lowest range of predictability in the Intermountain Region, it
shows better improvement after applying the TT-JBC, which is also true
for CanCM3 and CanCM4 near 45°N. The results with the TT-JBC are
consistent with the biased temperature (Figure S3; left panel), and in
addition they show that the TT-JBC adds value in regions that already
have considerable forecast skill. The improvement occurs mainly in
both the Canadian (CanCM3 and CanCM4) and the National Oceanic
and Atmospheric Administration (Goddard Earth Observing System
Model, Version 5) models. As abrupt warming events in the SI-x calcula-
tion are modeled with daily maximum and minimum temperature
(Schwartz & Marotz, 1986), the JBC applied on both temperatures
might influence on the corrected final calculation of SI-x. Therefore,
the bias correction applied over the individual models improves the
forecast skill; however, it does not outperform NGR-EMOS (Figure 6).

Using a multimodel ensemble NGR-EMOS (Figure 9), the results for the
five models can be summarized in two major points. First, there is
signal in the range of intraseasonal variability (10–60 days) in the
NMME models when compared to climatology (SScrps = 0.0), meaning
the multimodel ensemble outperforms 2 months before the beginning
of the spring. These changes are localized in two regions: the “corn

Figure 9. The SI-x leaf index predictability range measured in days before the
occurrence of the spring onset. The SI-x leaf index predictability range is com-
puted as in Figure 6 and for three skill score (SScrps) thresholds: 0.0 (a), 0.1 (b),
and 0.2 (c). Oblique lines indicating regions where the calculation of the metric is
not possible.

Table 3
Regression Values of the Parameters bi

Initialization b1 b2 b3 b4 b5

January 0.39 0.7 0.06 �0.01 �0.11
February 0.19 0.11 0.58 �0.03 0.14
March 0.27 0.26 0.36 0.28 �0.18
April �0.01 0.65 0.15 �0.09 0.26

CanCM3 CanCM4 CESM1 FLORB01 GEOS-5

Note. Regression values of the parameters bi (i = 1, 2, …, 5) in the probabilistic nonhomogeneous Gaussian regression
equation (12). The parameters are described for each initialization (January, …, April) and for the five NMME models:
CanCM3 (b1), CanCM4 (b2), CESM2 (b3), FLORB1 (b4), and GEOS-5 (b5). The parameter values are computed over an aver-
age region in the U.S. Great Plains (100°W–90°W, 40°N–50°N).
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belt” along 40°N (Nebraska, Iowa, Minnesota, and Illinois) and the
Intermountain Region. Second, when using higher thresholds
(SScrps = {0.1,0.2}), this range is reduced by 10 days (with some excep-
tions in small localized regions), with a lower reduction in the Great
Plains. Thus, a large range is still found in the vicinity of the Corn
Belt region that looks promising for potential agriculture-related
applications.

In addition, for different training periods and number of ensemble
members (Figure 10), the CRPS shows two important aspects to con-
sider when applying the NGR-EMOS in SI-x related products: (1) a long
training period significantly increases the predictability score (e.g., from
15 to 30 years; top panel Figure 10) and (2) a large number of ensemble
members marginally improves the RPS SS (e.g., from 10 to 20 members;
bottom panel Figure 10). Although the forecast skill was significantly
improved when the skill was low, it is not improved much when the
skill was already high. For example, the initialization in January
(1 month) shows a smooth transition from 1.7 with 10 members to
1.5 when using 20 ensemble members. When the skill is good (e.g.,
initialization in March at 3 month), increasing of the number of ensem-
bles does not add much value to the forecast skill.

A spatial description of the SS, after using the NGR-EMOS, reveals a sig-
nificant improvement in the Corn Belt region (Figure 6). It portrays the
positive effect of NGR-EMOS for the four initializations (January–April)
using the SScrps SS. When we compare the difference between the
model ensemble NMME mean and NGR-EMOS, the percentage of
improvement is of the order of 50 percentage points (from 10% to
80% SS) and the extension of this improvement expands significantly
relative to the untreated results. For example, in February and March,
the Corn Belt region sees an important improvement, which is verified
with the similar results obtained by two other EMOS methods: logistic
regression and Gaussian ensemble dressing (results not shown).
Therefore, EMOS adds significant value to the SI-x forecast products
at all initialization stages.

4. Conclusions

This study assesses the seasonal predictability of spring onset using an
index previously calibrated with plant phenology and variability of

temperature (SI-x; Ault et al., 2015, and references therein). A set of NMME models was treated with a daily
JBC approach and an ensemble model output statistics approach. Our findings show that untreated input
data are of limited use, as it exhibits negative skill relative to climatology. Also, the selected training period
length and ensemble size affect the SI-x forecast skill. Long training periods and a large number of ensemble
members improve the SI-x predictability SS. Because SI-x integrates temporal variations in the atmosphere at
a continental scale, it helps us identify regions where maximum skill occurs over North America. This study
provides insight into how reliable climate-based information helps to evaluate lead time on which spring
onset can be forecasted skillfully.

The results presented here show that the best predictability for the spring onset is in the range from 10 to
60 days located along a narrow band between 35°N and 45°N. Using a forecast threshold of SScrps = 0.0,
the range of predictability falls into two categories: 10–40 and 40–60 days. Using higher thresholds
(SScrps = 0.1 and 0.2), predictability shows a lower range with values around 10–30 days (Figure 9). The
40–60 day time horizon is notable, as it extends well beyond the 10-day barrier inherent to most meteorolo-
gical forecasts. It is, however, broadly consistent with Koster et al. (2011), which found some skill in air tem-
perature predictions on similar time scales, though the motivation and metrics of that study were different

Figure 10. (top) The continuous ranked probability score (CRPS) for the 50
ensemble model realizations for different training periods (15, 20, 25, and
30 years) and lead time (x axis: 1, 2, 3, and 4 months). Low CRPS values represent
better score. (bottom) Similar as Figure 10 (top) but fixing the training period to
30 years and changing both the ensemble size (x axis: 10, 20, 30, 40, and 50)
and lead time (1, 2, 3, and 4 months).
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from ours. The region with better skill is in the core of the continent along 40°N, where the major variability of
the SI-x is observed. This region is relevant because of its vicinity to the Corn Belt states that has great impacts
to the local and global economy. Also, it is where early and late spring variability is significant (Shubert et al.,
2016). Becker et al. (2014) also show that NMME has good results in the central United States, which further
supports our interpretation, although the regions with better skill found in this study are narrow
and localized.

Future work could include assessment of the atmospheric processes linked to early versus late spring onset.
The dominant driver is potentially the Pacific Jetstream transition from winter into spring because of its
impact in western North America. Indices have been constructed that characterize the position, structure,
and strength of the Pacific Jetstream (Newman & Sardeshmukh, 1998) as it migrates north, splits, and weak-
ens each spring. Therefore, the timing of this breakdown can be characterized in the intraseasonal range,
which typically occurs between mid-March and mid-April. The range of predictability found in this study
potentially supports the existence of driving mechanisms at this scale that might be orchestrating these
ranges of predictability skill.

Finally, our findings suggest that there is potential spring onset forecast skill in NMME products, but a sophis-
ticated postprocessing is necessary to achieve that potential. We delineate how the predictability skill of
NMME models to forecast spring onset in North America is improved with two postprocessing techniques
—the JBC and nonhomogeneous Gaussian regression EMOS. The JBC outperforms the biased temperature
SI-x product, and the improvement mainly occurs in both the Canadian and National Oceanic and
Atmospheric Administration models; however, it does not outperform the multimodel ensemble NGR-
EMOS. Using NGR-EMOS, a significant positive change in the SS is noted in regions where the skill of the
raw NMME ensemble data is low. The consensus of both techniques shows that regions of better predictabil-
ity can be expanded (e.g., the Corn Belt region). Therefore, adding these corrections would be important for
any future operational use.
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